
26 The Delphi Magazine Issue 30

Under Construction:
Website Indexing, Part 2
by Bob Swart

This month, we’ll continue our
Delphi internet solutions cov-

erage with the sequel of our 2-part
implementation of a mini website
search engine, this time focusing
on results presentation, search
flexibility and finally some query
optimisations.

If you’ve ever visited Alta Vista
or Yahoo you already know what a
Search Engine is: a place where you
can specify keywords in an editbox
(sometimes using special combin-
ing keywords such as AND, OR, NOT
and NEAR), and a Search button that
looks in a big database for you and
comes back with a list of webpages
(URLs) that contain the specified
keywords, most of the time even
with a short description, or the
first few lines of the webpage itself.

In the last issue, we started to
write our own dedicated website
search engine. The initial result
was a website scanner, indexer and
search engine (IndexBob) that
could be used to specify a single
keyword and search for all the
webpages in which this keyword
occurs.

Did You Ever Meta Tag?
Last time, we ended with a simple
list of URLs that pointed to the
webpages in which the specified
keyword was used. Unfortunately,
nothing else was said about these
webpages. Thinking about how to
specify some more information
made me think back about another
way to set up a search engine:
using META tags. A META tag is a
HTML tag, to be placed in the
HEADER of an HTML document, and
usually picked up by webcrawlers
(sent out by index databases and
big web search engines). A few
actual META tags from my own
homepage are shown in Listing 1.

Note the list of keywords in the
third META tag. These keywords
could also have been used to build

a keyword index database (instead
of actually parsing every web-
page). Surely, the listed keywords
are accurate, to the point and
define precisely what the webpage
is all about? On the other hand,
synonym keywords (like Windows
Control, or even simply Component
or Expert) may not be found. And
what about keywords that, for
some reason, are not even listed,
such as Internet and Intranet? (and I
know for a fact my website con-
tains a lot of information about
these two topics, but it seems that I
just haven’t updated my META tags
in a while).

And that’s not even the biggest
problem. The biggest problem is
the fact that there’s no real stan-
dard format for using META tags. I
specified the tagnames “author”,
“title” and “keywords”, but some-
one else might use “webmaster”,
“writer”, “description”, “topics”
etc and give them the same tag con-
tent values. So, for these two main

<META NAME="author" CONTENT="Bob Swart (aka Dr.Bob - www.drbob42.com)">
<META NAME="title" CONTENT="Dr.Bob's Delphi Clinic">
<META NAME="keywords" CONTENT="Dr.Bob Delphi ObjectPascal Pascal Experts Wizards
Components C++Builder Programming Borland Knowledge Bolesian Clinic RAD
Efficiency Performance Source Code Tools Utilities Star Trek">

➤ Listing 1

reasons, I’ve decided not to incor-
porate META tags in my search
engine, nor use them to describe
the webpages themselves (after
all, how many of your webpages
actually contain sensible META tags
anyway?).

Entitled
As an alternative, we can either list
the first few lines (or first 255
characters) from a webpage, or,
perhaps even more suitable,
simply use the assigned title of the
webpage, which is to be found
between the <TITLE> and </TITLE>
tags in the header of the HTML
document. For example, if this arti-
cle were published on my website,
I would probably give it the follow-
ing title in HTML:

<HTML>
<HEAD>
<TITLE>Under Construction #20:
WebSite Indexing (2)</TITLE>

</HEAD>

procedure ScanPage(const FileName: ShortString; WebPage: TNumPage);
var
f: Text;
Keyword: ShortString;

begin
assign(f,FileName);
reset(f);
if IOResult = 0 then begin
Keyword := '';
while (Keyword = '') and not eof(f) do begin
readln(f,Keyword);
if Pos('<TITLE>',UpperCase(Keyword)) > 0 then begin
Delete(Keyword,1,Pos('<TITLE>',UpperCase(Keyword))+6);
// remove title prefix
Delete(Keyword,Pos('</TITLE>',UpperCase(Keyword)),255)
// remove title postfix

end else
Keyword = '' { no title, so clear Keyword again }

end;
Titles[WebPages] := Keyword; { Title of Webpage }
close(f);
...

end
end {ScanPage};

➤ Listing 2

February 1998 The Delphi Magazine 27

➤ Figure 1

Using this HTML construct, we
only need to define a variable
Titles: Array of Strings to hold
the individual titles (just like the
WebPage: Array of Strings which
holds the URLs) and add some
additional parsing code to the pro-
cedure ScanPage in the version of
the unit Index that we ended with
last month, as shown in Listing 2.

The Array of Titles is saved to
the file title.bob, so now we have
three files that make up the web-
site search engine database:
index.bob (keywords and bitset of
webpages), pages.bob (actual
URLs for each webpage) and
title.bob (the title of each
webpage).

One more gimmick is to try to
locate the first specified keyword
that we’re looking for in the title of
the webpage as well. If the keyword
is also present in the title, then we
can call it a “hot hit” instead of a
regular hit, and I’ve decided to dis-
play this as shown in Figure 1, split-
ting the “hot hits” and regular hits
and also showing the titles just
above the URLs themselves.

Figure 1 is from Bolesian’s intra-
net and also illustrates the use of
AND (which is always optional) and
NOT (which means use the comple-
ment set of the next keyword).
We’ll get to them shortly.

With good use of the title of a
webpage, we can even use this
information to add some “meta
knowledge” to IndexBob, by
putting special information in the
title. For example, on my website
the title of webpages that contain a

book review always starts with
“Book Review:” or “Detailed Book
Review:” and the title of a third-
party tool review always starts
with “Tool Review:” or “Detailed
Tool Review:”.

Based on this information, we
can “pre-insert” a few keywords in
the list of specified keywords if the
user specifies that s/he is only
looking for book (or tool) reviews.
You can see this as well in Figure 1,
as both the “Book Review” and
“Tool Review” options have been
checked.

AND OR NOT
Looking for just a single keyword
doesn’t make for a very effective
search engine. Often, we’d like to
search for a combination of key-
words, using ANDor NOT. Sometimes
we would even want to list alterna-
tives using OR, although this can
also be realised by performing a
second search. The search for a
single keyword results in a set of
URLs (the IDs of the webpages). So,
we can use the * operator to AND
two result sets and the + operator
to OR (add) two result sets. When
using the NOT operator, we can

var
Found,SubSet: TPageSet;
_Not, _Or : Boolean = False;

begin
Keywords := LowerCase(Value('Keyword'));
Found := [0..WebPages-1]; { initially, everything is found }
Query := 0; { no queries performed, yet }
_Not := False;
_Or := False;
if root <> nil then
repeat
Keyword := GetNextKeyword;
if Keyword = 'and' then
{ skip }

else begin
if Keyword = 'or' then
_Or := True

else begin
if Keyword = 'not' then
_Not := True

else begin
if Length(Keyword) > 2 then begin
SubSet := root.FindKeywordInPages(Keyword);
if SubSet = [] then
writeln('
Invalid keyword: <I>',Keyword,'</I>')

else begin
if _Not then

SubSet := [0..WebPages-1] - SubSet;
_Not := False;
if _Or then
Found := Found + SubSet

else { and }
Found := Found * SubSet;

Inc(Query)
end

end
end

end
end

until Keywords = '';
if Query = 0 then
Found := []; { no SubSet found }

...

➤ Listing 3

28 The Delphi Magazine Issue 30

simply subtract the result set from
a completely filled set, leaving only
the bits that weren’t in the result
set to begin with. This effectively
implements the AND, OR and NOT spe-
cial keyword behaviors as can be
seen in Listing 3.

Apart from this processing of the
supplied keywords, very little has
changed in the original source of
IndexBob. So far, that is, because
it’s time to investigate some speed
optimisation techniques for Index-
Bob to increase the efficiency.

IndexBob Efficiency
Those of you who have known me a
little longer than today probably
remember that I’ve always been
keen on finding speed optimisa-
tions. Although IndexBob only
takes about 0.4 seconds to identify
the webpages where a single key-
word appears, I just want to inves-
tigate if we can decrease this time
even further. For that purpose, I
used calls to TimeGetTime (from
WINMM.DLL) at different points of
execution within IndexBob. It
wasn’t a big surprise that the one
big bottleneck turned out to be
loading the index rather than the
search itself. Of course, the index
consists of over 9,000 keywords
that form a binary tree, while locat-
ing a given keyword only takes
log(9,000) or 14 string compares at
maximum.

Generating the resulting output
also takes some time, but is
dwarfed by the time it actually
takes to send the output from the
web server back to the client
machine, of course. So, to optimise
the IndexBob program itself, and
minimise the possible strain its
execution has on the web server,
we need to focus our attention on
the index.bob indexfile and espe-
cially loading this file.

Last time, we saw that the results
of running the Scanner CGI applica-
tion on my website listed 199 web-
pages with the longest keyword
being 30 characters long. Based on
that information, I defined the stor-
age structure for a node in the
binary tree to use a set (32 bytes)
for the URL id, and a String[31]
(also 32 bytes, including the length
byte) for the keyword, yielding a

const
MaxPage = 255;
MaxKeyword = 31-8;

type
TNumPage = 0..MaxPage; { max number of webpages in site }
TPageSet = Set of TNumPage; { 255 }
TKeyword = String[MaxKeyword]; { 31 }
TNode = record
Keyword: TKeyword; { 32 bytes }
URLs: TPageSet; { 32 bytes }

end {TNode};

➤ Listing 4

total TNode size of 64 bytes, as can
be seen in Listing 4.

Since then, my website has
grown a bit (I’ve started to make
the on-line book Delphi Internet
Solutions available) to 214 web-
pages. Using the old approach
(Listing 4), the complete generated

➤ Table 1

Len. 1 2 3-4 5-8 9-16 17-32 33-64 65-128 129-214 Total

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 220 70 69 53 36 22 31 13 10 524

4 267 89 89 90 78 50 55 24 6 748

5 380 112 121 102 85 73 40 10 1 924

6 452 142 168 143 95 51 26 6 3 1086

7 519 141 161 121 95 63 27 4 2 1133

8 656 172 148 99 76 40 22 5 1 1219

9 519 97 102 74 60 19 7 3 1 882

10 412 90 77 62 38 13 6 1 0 699

11 384 68 55 32 16 5 2 4 0 566

12 262 59 33 11 11 4 2 1 0 383

13 189 32 16 5 5 2 1 0 0 250

14 166 23 11 1 0 1 0 0 0 202

15 123 8 6 2 1 0 0 0 0 140

16 87 4 0 0 0 0 1 0 0 92

17 73 3 0 0 0 0 1 0 0 77

18 48 2 2 0 0 0 0 0 0 52

19 23 2 1 0 0 0 0 0 0 26

20 29 1 0 0 0 0 0 0 0 30

21 19 1 0 0 0 0 0 0 0 20

22 13 1 0 0 0 0 0 0 0 14

23 10 0 0 0 0 0 0 0 0 10

24 5 0 0 0 0 0 1 0 0 6

25 3 0 0 0 0 0 0 0 0 3

26 3 0 0 0 0 0 0 0 0 3

27 2 0 0 0 0 0 0 0 0 2

28 1 0 0 0 0 0 0 0 0 1

29 1 0 0 0 0 0 0 0 0 1

30 1 0 0 0 0 0 0 0 0 1

31 0 0 0 0 0 0 0 0 0 0

Total 4867 1117 1059 795 596 343 222 71 24 9094

file index.bob would be 582Kb, list-
ing a whopping total of 9094 differ-
ent keywords.

If we take a look at the size of
these different keywords, com-
bined with the number of

February 1998 The Delphi Magazine 29

webpages in which each keyword
appears, we get the results shown
in Table 1.

The rows list the length of the
keywords, while the columns spec-
ify the (range of) number of pages
in which the keywords appears in.
It’s a little bit surprising at first to
actually see that most keywords
(4867 out of 9094) uniquely identify
a webpage. On the other hand, 24
keywords almost appear on every
webpage, and are clearly too
common to be of real use for this
search engine. As we can also
clearly see, most keywords are
between 5 and 10 characters in size
(note that I already skipped all key-
words smaller than 3 characters).
In fact, there are only 17 keywords
longer than 23 characters.

These analysis results can be
used to bring down the size of the
indexfile. First of all, let’s skip the
most common words that appear
in, say, more than 100 out of the 214
webpages. That would eliminate a
total of 36 most commonly used
keywords in my webpages (if
you’re curious, the list of the most
common 36 words on my website
is as follows: aka, all, and, are, bob,
book, but, can, code, com, database,
delphi, drbob42, drs, for, from, how,
more, not, reserved, review, rights,
robert, some, swart, that, the, this,
using, webmaster, webpage, which,
with, www, you and your).

However, if we look closely, we
see that some of these words will
actually be used in a search query,
and while each of them might not
be discriminating enough on its
own, combined they might just be
discriminating enough. So, I’ve
decided not to remove all common
keywords, but only the ones that
consist of a mere 3 letters. This
means that I’ve eliminated aka, all,
and, are, bob, but, can, com, drs, for,
how, not, the, www and you; 15
keywords in total.

A further, and by far more signifi-
cant, reduction can be made by
eliminating the 17 longest key-
words that have a size between 24
and 30 characters. This not only
means we end up with a total of
9062 keywords (32 less than we
started with, only a 0.5 percent
decrease), but also implies that we

can now use a String[23] to store
the keywords, instead of a
String[31], which is a 25%
decrease in storage space per key-
word, or a 12.5% percent decrease
in total index.bob filesize to 508 Kb.
Hence roughly a 12.5% increase in
loadtime and overall efficiency!
(Table 2).

In short: the number of key-
words went from 9094 to 9062 (or
by less than half a percent), but the
size of the index.bob file, and
hence the loadtime, decreased by
12.5%, as MaxKeyWord is now 23
instead of 31 and the size of TNode
goes from 64 to 56 bytes.

Of course, I must make sure that
any word that isn’t found (ie isn’t in
the list of “known” keywords) does
not result in an empty result set
when combined with keywords
that do exist. So a search for “Bob
Swart” (ie Bob and Swart) should
still yield all webpages that include
the word “Swart”, as “Bob” is one of
the most common keywords in my

website and hence removed from
the keyword tree. I’ve imple-
mented this by checking the value
of SubSet and if it’s empty I don’t
combine it with the Found set of
URLs, but just ignore it, and list the
keyword as being invalid.

Dynamic Strings
There’s another way to decrease
the index.bob filesize: by making
sure each keyword string on disk is
only using the exact number of
characters it needs. As we noted
before, most keywords are
between 5 and 10 characters in
size, so surely we could reduce the
size of index.bob considerably by
only writing those string charac-
ters to disk, thereby making the
size of TNode dynamic between 36
and 56 bytes instead of a static 56
bytes. First of all, we need to
change the WriteTree method (see
Listing 5) in the unit Index (to

➤ Table 2

Len. 1 2 3-4 5-8 9-16 17-32 33-64 65-100 Total

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 220 70 69 53 36 22 31 8 509

4 267 89 89 90 78 50 55 30 748

5 380 112 121 102 85 73 40 11 924

6 452 142 168 143 95 51 26 9 1086

7 519 141 161 121 95 63 27 6 1133

8 656 172 148 99 76 40 22 6 1219

9 519 97 102 74 60 19 7 4 882

10 412 90 77 62 38 13 6 1 699

11 384 68 55 32 16 5 2 4 566

12 262 59 33 11 11 4 2 1 383

13 189 32 16 5 5 2 1 0 250

14 166 23 11 1 0 1 0 0 202

15 123 8 6 2 1 0 0 0 140

16 87 4 0 0 0 0 1 0 92

17 73 3 0 0 0 0 1 0 77

18 48 2 2 0 0 0 0 0 52

19 23 2 1 0 0 0 0 0 26

20 29 1 0 0 0 0 0 0 30

21 19 1 0 0 0 0 0 0 20

22 13 1 0 0 0 0 0 0 14

23 10 0 0 0 0 0 0 0 10

Total 4851 1117 1059 795 596 343 221 80 9062

30 The Delphi Magazine Issue 30

generate the index). The compiler
conditional BLOCK is defined to
enable the new code to compile,
otherwise we’ll revert to the old
code of a TNode of 56 bytes.

Using this method, we end up
with an index.bob indexfile of no
more than 372,621 bytes! Another
size reduction of 25%. The only
question is: will this new method
result in a faster loadtime as well?
To test this, we also need to update
the ReadNode method in unit Index-
Bob (see Listing 6), to make sure it
can handle the new dynamic layout
of the index.bob indexfile.

Unfortunately, the three Block-
Reads are significantly slower than
the single Read we used last month.
So, while the new algorithm results
in a further 25% reduction in index
filesize, the performance actually
decreases, and this alternative
turns out to be less useful after all.

Hashing
Another, theoretical, technique we
can use to optimise the loadtime of
the indexfile is to use a hashing
algorithm. This means that we just
convert every keyword (24 bytes at
this time) to a 4 or 8-byte hashing
value. We would need a good hash-
ing algorithm to guarantee that
(almost) all keywords are con-
verted to a unique hash value, and
indexing the website also means
calculating the hash values for
each keyword, so indexing could
become much slower. However, it
should also be clear that the
potential benefits for IndexBob are
great: for an 8-byte hashing value, a
TNode only takes 32 + 8 = 40 bytes,
which results in an even smaller
filesize for index.bob than when
using the dynamic string method.
And since comparing binary hash
values is much faster than compar-
ing string values, that would surely
more than compensate for the cal-
culation of the has value for each
specified keyword. In short: for
time critical search engines, a good
hashing algorithm might be the
ideal solution.

Which is where this article ends,
since I don’t have a perfect hashing
routine at hand (and the current
efficiency is more than satisfactory
anyway). If you are interested in

procedure ReadNode(var IndexFile: TIndexFile; root: TTree);
begin
if root.Prev <> nil then
ReadNode(IndexFile, root.Prev);

{$IFDEF BLOCK}
BlockRead(IndexFile,root.Node.Keyword[0],1);
BlockRead(IndexFile,root.Node.Keyword[1],Ord(root.Node.Keyword[0]));
BlockRead(IndexFile,root.Node.URLs,SizeOf(root.Node.URLs));
{$ELSE}
Read(IndexFile,root.Node);
{$ENDIF}
Inc(Keywords);
if root.Next <> nil then ReadNode(IndexFile, root.Next)

end {ReadNode};

➤ Listing 6

procedure WriteTree(var IndexFile: TIndexFile; root: TTree);
begin
if root.Prev <> nil then
WriteTree(IndexFile,root.Prev);

if (Length(root.node.Keyword) > 3) or
(Pages(root.node.URLs) <= MaxHits) then begin
{$IFDEF BLOCK}
BlockWrite(IndexFile,root.Node.Keyword[0],Ord(root.node.Keyword[0])+1);
BlockWrite(IndexFile,root.Node.URLs,SizeOf(root.Node.URLs));
{$ELSE}
write(IndexFile,root.Node); { for "fixed size" TNodes }
{$ENDIF}
end;
if root.Next <> nil then
WriteTree(IndexFile,root.Next)

end {WriteTree};

➤ Listing 5

this technique check out Julian
Bucknall’s article on page 18 and
his follow-up next month!

TNeverendingstory...
In this second part of the website
search engine article we’ve seen
how to add more descriptive infor-
mation to the found URL, how to
search for more than one keyword
(using AND, OR and NOT) and how we
could increase the efficiency by
almost 15% without sacrificing
much in functionality or keywords,
and how we can potentially
increase the efficiency by at least
another 25% by using hashing tech-
niques. The new and complete
source code for the scanner, ana-
lyser and indexer (Index) and the
search engine itself (IndexBob) is
on this month’s disk. By the time
you read this article, IndexBob
v2.01 has already been operational
for a number on weeks on my web-
site, with some possible additional
enhancements since the time I
wrote this article (early January
1998). Check my website at
www.drbob42.com for updates.

If you have any other ideas for
further improvements, or just want
to talk about IndexBob, do send me
some feedback in my special
newsgroup drbob.internet.tools at

news.shoresoft.com (there’s a link
on my website). I welcome any and
all feedback.

Next Time Dr.Bob Says...
Next month we’ll move away from
the internet for a (short) while and
start to investigate spelling check-
ers, how do they work, what is
needed, and of course: how do I
make my own spelling checker for,
in and with Delphi?

Stay tuned...

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is a profes-
sional knowledge engineer tech-
nical consultant using Delphi,
C++Builder and JBuilder for
Bolesian (at www.bolesian.com),
a freelance technical author for
The Delphi Magazine, co-author
of The Revolutionary Guide to
Delphi 2 and the electronic knowl-
edge base Delphi Internet Solu-
tions, with topics about Delphi
and the internet/intranet. In his
spare time, Bob likes to watch
video tapes of Star Trek Voyager
and Deep Space Nine with his
3.5-year old son Erik Mark Pascal
and his 1-year old daughter
Natasha Louise Delphine.

	Did You Ever Meta Tag?
	Entitled
	AND OR NOT
	IndexBob Efficiency
	Dynamic Strings
	Hashing
	TNeverendingstory...
	Next Time Dr.Bob Says...

